Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Biophys ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733503

RESUMO

Oxidative stress is involved in the pathological processes of many neurodegenerative diseases. Protein modification by small ubiquitin-like modifiers (SUMOs) has been implicated in oxidative stress injury. By conjugating SUMOs to their selective protein substrates, SUMO ligases play critical roles in regulating functions of proteins involved in oxidative stress injury. In this study, we screened siRNAs to knockdown the SUMO ligase PIAS3 to assess its role in H2O2-induced injury in HT22 cells. H2O2 stimulation increased total protein SUMOylation, facilitated intracellular reactive oxygen species (ROS) release, increased cleaved caspase-3 levels, promoted p38 and JNK activation (phosphorylation), upregulated apoptosis, and decreased cell viability. The siRNA against PIAS3 329-347 (siPIAS3-329) markedly downregulated the protein expression of PIAS3 and reversed these effects, whereas siNC (negative control) had no effect. Our findings demonstrate that PIAS3-mediated SUMOylation facilitates oxidative stress injury and p38/JNK-mediated cell apoptosis and that PIAS3 is a potential target to protect against oxidative stress injury.

2.
Cancers (Basel) ; 14(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36428687

RESUMO

Breast cancer (BC) is a serious threat to women's health and metastasis is the major cause of BC-associated mortality. Various techniques are currently used to preoperatively describe the metastatic status of tumors, based on which a comprehensive treatment protocol was determined. However, accurately staging a tumor before surgery remains a challenge, which may lead to the miss of optimal treatment options. More severely, the failure to detect and remove occult micrometastases often causes tumor recurrences. There is an urgent need to develop a more precise and non-invasive strategy for the detection of the tumor metastasis in lymph nodes and distant organs. Based on the facts that tumor metastasis is closely related to the primary tumor microenvironment (TME) evolutions and that metabolomics profiling of the circulatory system can precisely reflect subtle changes within TME, we suppose whether metabolomic technology can be used to achieve non-invasive and real-time monitoring of BC metastatic status. In this study, the metastasis status of BC mouse models with different tumor-bearing times was firstly depicted to mimic clinical anatomic TNM staging system. Metabolomic profiling together with metastasis-related changes in TME among tumor-bearing mice with different metastatic status was conducted. A range of differential metabolites reflecting tumor metastatic states were screened and in vivo experiments proved that two main metastasis-driving factors in TME, TGF-ß and hypoxia, were closely related to the regular changes of these metabolites. The differential metabolites level changes were also preliminarily confirmed in a limited number of clinical BC samples. Metabolite lysoPC (16:0) was found to be useful for clinical N stage diagnosis and the possible cause of its changes was analyzed by bioinformatics techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...